Riemann Zeta 函数(二)

在上一篇文章《从调和级数到 Riemann Zeta 函数》里面,我们已经给出了 Riemann Zeta 函数的定义,i.e.

 \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.

其定义域是 [1,\infty)\subseteq\mathbb{R}. 根据级数与定积分的等价关系可以得到:

  1.  s = 1 时, \zeta(1) = \infty;
  2. s>1 时, \zeta(s)<\infty.

本文将会重点讲两个内容:

  1. 如何把 Riemann Zeta 函数从 [1,\infty)\subseteq \mathbb{R} 上延拓到  \{s\in \mathbb{C}: \Re(s)>0\} 上;
  2. Riemann Zeta 函数在 \{s\in\mathbb{C}: \Re(s)\geq 1\} 上没有零点。

Riemann Zeta 函数定义域的延拓

如果想把 Riemann Zeta 函数的定义域从  [1,\infty)\subseteq \mathbb{R} 延拓到更大的区域 \{s\in\mathbb{C}:\Re(s)>0\} 上,就需要给出 Riemann Zeta 函数在 \{s\in \mathbb{C}: \Re(s)>0\} 上的定义。而且在原始的定义域 [1,\infty)\subseteq\mathbb{R} 上面,新的函数的取值必须与原函数的取值保持一致。

首先,我们将会在 [1,\infty)\subseteq \mathbb{R} 上面证明如下恒等式:

\zeta(s) = \frac{s}{s-1} - s\int_{1}^{\infty}\frac{\{x\}}{x^{s+1}}dx.

证明:当 s=1 时,上述等式显然成立,两侧都是 \infty.

\frac{s}{s-1}-s\int_{1}^{\infty}\frac{\{x\}}{x^{s+1}}dx

= \frac{s}{s-1} - s\sum_{n=1}^{\infty}\int_{n}^{n+1}\frac{\{x\}}{x^{s+1}}dx

= \frac{s}{s-1} - s\sum_{n=1}^{\infty}\int_{n}^{n+1}\frac{x-n}{x^{s+1}}dx

 = \frac{s}{s-1} - s\sum_{n=1}^{\infty}\bigg(\int_{n}^{n+1}\frac{1}{x^{s}}dx - \int_{n}^{n+1}\frac{n}{x^{s+1}}dx\bigg)

= \frac{s}{s-1} - s\int_{1}^{\infty}\frac{1}{x^{s}}dx + \sum_{n=1}^{\infty}n\cdot\int_{n}^{n+1}\frac{s}{x^{s+1}}dx

= \sum_{n=1}^{\infty}n\cdot\bigg(\frac{1}{n^{s}}-\frac{1}{(n+1)^{s}}\bigg)

= \sum_{n=1}^{\infty}\bigg(\frac{1}{n^{s-1}}-\frac{1}{(n+1)^{s-1}} + \frac{1}{(n+1)^{s}}\bigg)

= \sum_{n=1}^{\infty}\frac{1}{n^{s}}.

从右式的表达式

\frac{s}{s-1} - s \int_{1}^{\infty}\frac{\{x\}}{x^{s+1}}dx

可以看出 \zeta(s) 可以延拓到 \{s \in\mathbb{C}:\Re(s)>0\} 上。而且右侧的函数在\{s\in\mathbb{C}:\Re(s)>0,s\neq 1\} 是解析的,并且 s=1 是该函数的一个极点。进一步的分析可以得到,我们得到一个关于 (s-1)\zeta(s) 的解析函数,而且 \lim_{s\rightarrow 1}(s-1)\zeta(s)=1. 综上所述:

  1. Riemann Zeta 函数可以延拓到 \{s\in\mathbb{C}:\Re(s)>0\} 上;
  2. Riemann Zeta 函数在 \{s\in\mathbb{C}:\Re(s)>0, s\neq 1\} 上是解析的; s=1 是 Riemann Zeta 函数的极点。

Riemann Zeta 函数的非零区域

著名的 Riemann 猜想说的是 \zeta(s) 函数的所有非平凡零点都在直线 \{s\in\mathbb{C}:\Re(s)=1/2\} 上。因此,数学家首先要找出的就是 Riemann Zeta 函数的非零区域。而本篇文章将会证明 Riemann Zeta 函数在 \{s\in\mathbb{C}:\Re(s)\geq 1\} 上面没有零点。

\Re(s)>1 区域

首先,我们要证明当 \Re(s)>1 时, \zeta(s)\neq 0.

在这里,就需要使用一个重要的恒等式:当 \Re(s)>1 时,

\zeta(s) =\sum_{n=1}^{\infty}\frac{1}{n^{s}}

= \prod_{p}\bigg(1+\frac{1}{p^{s}}+\frac{1}{p^{2s}}+\cdots\bigg)

= \prod_{n=1}^{\infty}\bigg(1-\frac{1}{p_{n}^{s}}\bigg)^{-1},

其中这里的 p 表示所有的素数相乘,而 p_{n} 表示第 n 个素数。

下面我们证明:

\bigg|1-\frac{1}{p_{n}^{s}}\bigg|^{-1}\geq 1-\frac{1}{p_{n}^{\sigma}-1}.

事实上,令 s = \sigma + i t,\sigma=\Re(s)>1 时,我们有

\bigg|1-\frac{1}{p_{n}^{s}}\bigg|^{-1} = \bigg(1+\frac{1}{p_{n}^{s}}+\frac{1}{p_{n}^{2s}}+\cdots\bigg)

\geq 1-\frac{1}{|p_{n}^{s}|}- \frac{1}{|p_{n}^{2s}|} -\cdots

= 1- \frac{1}{p_{n}^{\sigma}} - \frac{1}{p_{n}^{2\sigma}} -\cdots

= 1- \frac{1}{p_{n}^{\sigma}-1}.

因此,

|\zeta(s)| \geq \prod_{n=1}^{\infty}\bigg|1-\frac{1}{p_{n}^{s}}\bigg|^{-1} \geq\prod_{n=1}^{\infty}\bigg(1-\frac{1}{p_{n}^{\sigma}-1}\bigg).

同时,

\lim_{n\rightarrow \infty} \bigg(1- \frac{1}{p_{n}^{\sigma}-1}\bigg) = 1 ,

1-\frac{1}{p_{n+1}^{\sigma}-1} \geq 1- \frac{1}{p_{n}^{\sigma}-1},

\sum_{n=1}^{\infty}\frac{1}{p_{n}^{\sigma}}\leq \sum_{n=1}^{\infty}\frac{1}{n^{\sigma}}<\infty\sigma>1.

所以,当 \Re(s)>1 时, \zeta(s) \neq 0.

\Re(s) =1 直线

Claim 1. 下面我们将会证明恒等式:对于 \sigma >1, \text{ } t\in\mathbb{R},

\Re(\ln\zeta(\sigma + it)) = \sum_{n=2}^{\infty}\frac{\Lambda(n)}{n^{\sigma}\ln(n)}\cos(t\ln(n)),

其中当 n 形如 p^{\alpha},p 是素数, \alpha \geq 1.\Lambda(n) = \ln(p). 而对于其余的 n,\Lambda(n)=0.

事实上,根据 Euler 公式,

\zeta(s) = \prod_{p}\bigg(1-\frac{1}{p^{s}}\bigg)^{-1}.

s = \sigma + it, 可以得到

 \ln\zeta(s) = -\sum_{p}\ln\bigg(1-\frac{1}{p^{s}}\bigg)

= \sum_{p}\sum_{\alpha=1}^{\infty}\frac{1}{\alpha p^{\alpha s}}

= \sum_{p}\sum_{\alpha=1}^{\infty}\frac{1}{\alpha p^{\alpha\sigma}}\cdot p^{-i\alpha t}

= \sum_{p}\sum_{\alpha = 1}^{\infty}\frac{1}{\alpha p^{\alpha\sigma}}\cdot e^{-i\alpha t \ln p}.

进一步,

\Re(\ln\zeta(s)) = \sum_{p}\sum_{\alpha =1}^{\infty}\frac{1}{\alpha p^{\alpha\sigma}}\cdot\cos(\alpha t \ln p)

并且右侧等于

RHS = \sum_{n=2}^{\infty}\frac{\Lambda(n)}{n^{\sigma}\ln(n)}\cdot\cos(t\ln(n))

= \sum_{p}\sum_{\alpha = 1}^{\infty} \frac{\ln(p)}{p^{\alpha\sigma}\ln(p^{\alpha})}\cdot\cos(t\ln(p^{\alpha}))

= \sum_{p}\sum_{\alpha = 1}^{\infty}\frac{1}{\alpha p^{\alpha\sigma}}\cdot\cos(\alpha t\ln p).

所以,恒等式成立,Claim 1 证明完毕。

Claim 2.

\Re(3\ln\zeta(\sigma) + 4\ln\zeta(\sigma+it) + \ln\zeta(\sigma+2it))\geq 0,

其中 \sigma>1,t\in\mathbb{R}. 换句话说

|\zeta(\sigma)^{3}\zeta(\sigma+it)^{4}\zeta(\sigma+2it)|\geq 1.

事实上,

从三角函数的性质可以得到:

3+4\cos(\theta)+\cos(2\theta)

= 3 + 4\cos(\theta)+2\cos^{2}(\theta)-1

= 2(\cos(\theta)-1)^{2}\geq 0,

所以,从 Claim 1 可以得到

\Re(3\ln\zeta(\sigma) + 4\ln\zeta(\sigma+it) + \ln\zeta(\sigma+2it))

= \sum_{n=2}^{\infty} \frac{\Lambda(n)}{n^{\sigma}\ln(n)} \cdot ( 3 + 4\cos(t\ln(n)) + \cos(2t\ln(n))) \geq 0.

进一步地,使用 \Re(\ln(z)) = \ln(|z|) 可以得到

0\leq 3\ln|\zeta(\sigma)| + 4\ln|\zeta(\sigma+it)| + \ln|\zeta(\sigma+2it)|

= \ln|\zeta(\sigma)^{3}\zeta(\sigma+it)^{4}\zeta(\sigma+2it)|,

可以推导出 |\zeta(\sigma)^{3}\zeta(\sigma+it)^{4}\zeta(\sigma+2it)|\geq 1. 因此 Claim 2 证明完毕。

Claim 3. \zeta(1+it)\neq 0 对于所有的 \{t\in\mathbb{R}: t\neq 0\} 成立。

反证法:假设 \zeta(s)s=\sigma + it (t\neq 0) 存在阶数为 m 的零点。也就是说:

\lim_{\sigma\rightarrow 1^{+}} \frac{\zeta(\sigma+it)}{(\sigma+it-1)^{m}}=c\neq 0, 其中 m\geq 1.

从 Riemann Zeta 函数的延拓可以知道, \lim_{\sigma\rightarrow 1^{+}}(\sigma -1)\zeta(\sigma) = 1. 并且 \zeta(s)\{s\in\mathbb{C}:\Re(s)>0, s\neq 1\} 上是解析函数。

从 Claim 2 可以得到:

|(\sigma-1)^{3}\zeta(\sigma)^{3}(\sigma+it-1)^{-4m}\zeta(\sigma+it)^{4}\zeta(\sigma+2it)|

\geq |\sigma-1|^{3}|\sigma-1+it|^{-4m}

\geq |\sigma-1|^{3}\cdot |\sigma-1|^{-4m}

= \frac{1}{|\sigma-1|^{4m-3}}.

\sigma\rightarrow 1^{+}, 可以得到左侧趋近于一个有限的值,但是右侧趋近于无穷,所以得到矛盾。也就是说当 t\neq 0 时, \zeta(1+it)\neq 0 成立。

根据之前的知识, s= 1\zeta(s) 的极点,所以我们得到了本篇文章的主要结论: \zeta(s)\{s\in\mathbb{C}:\Re(s)\geq 1\} 上面没有零点。

总结

本篇文章从 Riemann Zeta 函数的延拓开始,证明了 Riemann Zeta 函数在 \{s\in\mathbb{C}:\Re(s)\geq 1\} 上没有零点。在下一篇文章中,笔者将会证明在 \Re(s)=1 附近一个“狭长”的区域上,Riemann Zeta 函数没有零点。

来源:知乎 www.zhihu.com

作者:张戎

【知乎日报】千万用户的选择,做朋友圈里的新鲜事分享大牛。
点击下载